AVL树中的LR的情况
在AVL树中,LR(左右)情况是一种不平衡状态,通常发生在插入一个节点后,导致某个节点的左子树的右子节点导致不平衡。以下是对LR情况的详细解释,包括其特征、处理方法和示例。
LR情况的特征
结构:
假设不平衡节点为
A,其左子节点为B,而B的右子节点为C。这个结构如下:
A / B \ C不平衡原因:
插入节点
C,使得A的平衡因子变为大于1。这表明左子树的高度较高,但右子树的高度相对较低。
处理LR不平衡的步骤
左旋转
B:先对节点
B进行左旋转,使C成为B的父节点。结果是C成为B的新父节点,同时B变为C的左子节点:
A / C / B右旋转
A:然后对不平衡节点
A进行右旋转,使得C成为新的根节点,最终结构变为:
C / \ B A
示例
假设插入节点的顺序为 30, 10, 20:
插入
30:30插入
10:30 / 10插入
20:30 / 10 \ 20在这个结构中,节点
30的平衡因子为2(左子树高度为2,右子树高度为0),表明不平衡。
处理步骤
左旋转
B(即10),得到:30 / 20 / 10右旋转
A(即30),最终得到:20 / \ 10 30
总结
LR情况是AVL树中的一种不平衡状态,需要通过先左旋再右旋的方式来恢复平衡。这种处理方式有效地将造成不平衡的右子节点提升到合适的位置,同时保持二叉搜索树的性质,使得查找、插入和删除操作保持在 (O(\log n)) 的时间复杂度内。
Last updated